منابع مشابه
Bessel Subfusion Sequences and Subfusion Frames
Fusion frames are a generalized form of frames in Hilbert spaces. In the present paper we introduce Bessel subfusion sequences and subfusion frames and we investigate the relationship between their operation. Also, the definition of the orthogonal complement of subfusion frames and the definition of the completion of Bessel fusion sequences are provided and several results related with these no...
متن کاملContinuous frames and g-frames
In this note, we aim to show that several known generalizations of frames are equivalent to the continuous frame defined by Ali et al. in 1993. Indeed, it is shown that these generalizations can be considered as an operator between two Hilbert spaces.
متن کاملmetric frames
dar in paian name dar ebteda mafahim topologicy baian mishavad va sepas mafahim rastehie va frames ha ra baian mikonim
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولSome relationship between G-frames and frames
In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K)$-module $B(H,K)$. This is an extension of [A. Askarizadeh, M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011) 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2012
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2012/603580